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Agricultural residues have near-term potential as a feedstock for 
bioenergy production, but their removal must be managed carefully 
to maintain soil health and productivity. Recent studies have shown 
that subfi eld scale variability in soil properties (e.g., slope, texture, 
and organic matter content) that aff ect grain yield signifi cantly aff ect 
the amount of residue that can be sustainably removed from diff erent 
areas within a single fi eld. Th is modeling study examines the concept 
of variable-rate residue removal equipment that would be capable of 
on-the-fl y residue removal rate adjustments ranging from 0 to 80%. 
Th irteen residue removal rates (0% and 25–80% in 5% increments) 
were simulated using a subfi eld scale integrated modeling framework 
that evaluates residue removal sustainability considering wind 
erosion, water erosion, and soil carbon constraints. Th ree Iowa fi elds 
with diverse soil, slope, and grain yield characteristics were examined 
and showed sustainable, variable-rate agricultural residue removal 
that averaged 2.35, 7.69, and 5.62 Mg ha−1, respectively. In contrast, 
the projected sustainable removal rates using rake and bale removal 
for the entire fi eld averaged 0.0, 6.40, and 5.06 Mg ha−1, respectively. 
Th e modeling procedure also projected that variable-rate residue 
harvest would result in 100% of the land area in all three fi elds being 
managed in a sustainable manner, whereas Field 1 could not be 
sustainably managed using rake and bale removal, and only 83 and 
62% of the land area in Fields 2 and 3 would be managed sustainably 
using a rake and bale operation for the entire fi eld. In addition, it was 
found that residue removal adjustments of 40 to 65% are suffi  cient 
to collect 90% of the sustainably available agricultural residue.

A Conceptual Evaluation of Sustainable Variable-Rate 
Agricultural Residue Removal

D. Muth, Jr.* and K. M. Bryden

Over the past three decades, signifi cant discussion 
and debate have taken place regarding the opportu-
nity for sustainable removal of agricultural residues 

for bioenergy production. Th e latest motivation for investigating 
agricultural residue removal potential comes from the Energy 
Independence and Security Act (2007), which requires annual 
U.S. biofuel production to increase to more than 136 billion 
liters by 2022. Noncornstarch feedstock, such as agricultural 
residues, must comprise nearly 80 billion liters of this produc-
tion. If a production rate of 330 liters of biofuel per metric ton 
of biomass feedstock is assumed (Aden et al., 2002; Phillips et 
al., 2011), meeting this target will require the development and 
utilization of over 240 million metric tons of noncornstarch bio-
mass resources annually. Many in the bioenergy community con-
sider sustainable agricultural residues to be the cellulosic resource 
with the greatest near-term potential for bioenergy production 
(Perlack et al., 2005; Aden et al., 2002). Agricultural residues 
provide a number of functions within the agronomic system 
that are critical to maintaining soil health (Karlen et al., 2003; 
Johnson et al., 2006; Wilhelm et al., 2007; Clay et al., 2010), and 
excessive residue removal can negatively aff ect the long-term pro-
ductivity of soil resources (Wilhelm et al., 2010; Sheehan et al., 
2004; Mann et al., 2002; Khan et al., 2007).

A number of previous eff orts have investigated the issue of 
sustainable residue removal across a wide range of spatial scales 
and analysis approaches. Th ese have identifi ed that signifi cant 
amounts of agricultural residues are potentially available for 
bioenergy production. An early study performed by Larson 
(1979) examined agricultural residue removal potential across 
the Corn Belt, Great Plains, and the Southeast of the United 
States. Because of data and computational limitations, this study 
used area-weighted averages for soil characteristics, climate con-
ditions, and crop yields across the USDA-identifi ed major land 
resource areas (MLRAs) (USDA–NRCS, 2012a) for the regions 
investigated. Th e scale of MLRAs is typically groups of 5 to 20 
counties. To do this, Larson aggregated the soils data available 
to create a composite set of erodibility factors representing each 
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MLRA and estimated that nearly 49 million metric tons of agri-
cultural residue could be sustainably harvested over the regions 
assessed at that time. Aft er an extended period in the 1980s and 
1990s during which agricultural residue removal received limited 
research focus, Nelson (2002) used the Soil Survey Geographic 
(SSURGO) Database (USDA–NRCS, 2011c), an open access 
national soil survey database provided by the USDA Natural 
Resources Conservation Service (NRCS) to investigate residue 
removal potential for 37 states from the Great Plains to the East 
Coast. Nelson developed a methodology using “county average, 
hectare-weighted fi elds.” Th is methodology aggregated the range 
of soil characteristics for each county and concluded at that time 
the 37 states investigated could annually produce approximately 
58 million metric tons of residue in a sustainable manner. Contin-
ued progress with data management and environmental modeling 
tools enabled Nelson et al. (2004) to adapt the 2002 Nelson study 
to (i) include additional crop rotations and (ii) calculate erosion 
at the SSURGO soil type spatial scale (10–100 m). Based on this, 
Nelson et al. (2004) concluded that 30.2 million dry metric tons 
of corn (Zea mays L.) stover and 13.4 million dry metric tons of 
wheat (Triticum aestivum L.) straw were available for removal 
annually across the 10 states investigated over the 5-yr span from 
1997 to 2001. In 2007, Graham et al. used the methodology 
developed by Nelson et al. (2004) to investigate corn stover resi-
due removal across the United States. Th e study by Graham et al. 
(2007) used the same spatial scale, or scenario tools, as the 2004 
study by Nelson et al. and included an additional constraint of 
soil moisture. Graham et al. (2007) also found that soil organic 
carbon was an important consideration but noted signifi cant 
computational limitations to including it. Th ey stated “in its cur-
rent form with manual input, the Soil Conditioning Index is not 
practical to run for the thousands of corn production situations 
that occur in the USA.” Th e study concluded that 58.3 million 
metric tons of stover could be sustainably removed annually.

Cruse and Herndl (2009) noted that developing a sustain-
able and profi table cellulosic biofuels industry using corn stover 
will require the ability to determine spatially variable sustainable 
removal rates and harvest technology that can remove residue at 
these rates. Signifi cant work has been done looking at single-pass 
and multi-pass residue removal system confi gurations and quan-
tifying the generalized removal potential of the diff erent systems. 
Th ese systems have generally not been capable of variable-rate 
removal. Single-pass confi gurations have much more potential 
for on-the-fl y adjustments of removal rate than multipass con-
fi gurations, and some investigations of variable-rate, single-pass 
confi gurations have been performed. Karkee et al. (2010) pre-
sented a study in which subfi eld removal adjustments were made 
using the single-pass equipment confi guration used by Hoskin-
son et al. (2007). Similar to variable-rate seeding (Fountas et al., 
2006; Bullock et al., 1998), variable-rate fertilizer application 
(Hong et al., 2006; Koch et al., 2004), and variable-rate chemical 
application (Anglund and Ayers, 2003), the availability of high-
spatial-resolution agriculture datasets provides signifi cant moti-
vation for developing variable residue removal equipment. Based 
on single-pass technologies that include removal rates from 25% 
(Zych, 2008) to more than 80% (Hoskinson et al., 2007), the 
study presented here assumes an adjustable on-the-fl y removal 
rate of 25 to 80% in 5% increments, with a 0% removal option.

Muth et al. (2012) developed an integrated modeling 
approach that uses high-spatial-resolution agricultural datasets 
to examine the variability of subfi eld agricultural residue removal 
(Fig. 1). Th is integrated model coupled the Revised Universal Soil 
Loss Equation, Version 2 (RUSLE2) (USDA–NRCS, 2011a), 
Wind Erosion Prediction System (WEPS) (USDA–ARS and 
NRCS, 2008), and Soil Conditioning Index (SCI) (USDA–
NRCS, 2012b) models with a multiscale set of databases describ-
ing crop yield, surface topography, soil characteristics, climate, 
and land management data. Th e sustainability of rake and bale 

Fig. 1. The subfi eld scale modeling process including the databases, models, and data fl ow through the integrated model. LiDAR, light detection 
and ranging; NRCS, Natural Resources Conservation Service; RUSLE2, Revised Universal Soil Loss Eq. [2]; SCI, Soil Conditioning Index; SSURGO, Soil 
Survey Geographic Database provided by the Natural Resources Conservation Service; WEPS, Wind Erosion Prediction System.
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residue removal of three fi elds in Iowa was examined using the 
current NRCS conservation management planning guidelines 
(USDA–NRCS, 2011b) and the subfi eld modeling approach. 
Rake and bale residue removal was modeled using NRCS opera-
tional assumptions that include raking on the same day as grain 
harvest, with baling occurring 2 d later. Th e removal rate for the 
modeled system is approximately 50% but varies slightly with 
crop rotation. Th e NRCS conservation management planning 
analysis concluded that rake and bale removal would be sustain-
able for two of the three fi elds. Th e subfi eld model demonstrated 
that there was signifi cant variability in the sustainability of rake 
and bale removal across individual fi elds. As a consequence, the 
study concluded that the dominant critical soil and slope and the 
fi eld average yield assumptions used in the NRCS conservation 
management planning may lead to unsustainable residue removal 
decisions for portions of some fi elds and reduced residue removal 
in other fi elds.

One potential approach for dealing with subfi eld scale vari-
ability in sustainable residue removal rates is to use equipment 
that can perform controlled, on-the-fl y removal rate adjustments. 
Although it is becoming more broadly recognized that removal 
rates vary from fi eld to fi eld and within fi elds (Cruse and Herndl, 
2009), limited work has focused on identifying the impact and 
value of equipment with this capability. Th is paper investigates 
sustainable variable-rate residue removal at the subfi eld scale 
for three representative Iowa fi elds. Specifi cally, the impact of a 
conceptual single-pass residue harvester confi guration that can 
make on-the-fl y removal rate adjustments is investigated using 
the subfi eld scale model developed by Muth et al. (2012). Th e 
previous study developed the integrated model and established 
that subfi eld variability in soil characteristics, surface slope, and 
grain yield can lead to signifi cant variability in sustainable resi-
due removal rates across a fi eld. Th is study extends the earlier 
model to explore the impact of variable-rate residue removal on 
sustainably available residue. Th e results of variable-rate harvest 
using this conceptual machine are compared with sustainable 
rake and bale removal of agricultural residue using NRCS plan-
ning guidelines. In addition, this study quantifi es the potential 
impact of various equipment residue removal capabilities.

Materials and Methods
In this study, the integrated model developed by Muth et 

al. (2012) to support sustainable subfi eld scale residue removal 
assessments is used to examine sustainable, variable-rate agricul-
tural residue removal potential using a conceptual variable-rate 
harvesting system. Figure 1 shows the datafl ow within the sufi eld 
integrated model. A computational scheduling algorithm man-
ages two iterative loops. Th e fi rst loop implements a geoprocess-
ing tool (ESRI ArcGIS 10) to organize the data from diff erent 
spatial scales to be consistent with the crop yield data points that 
represent the base spatial unit for this analysis. Th e second itera-
tive loop organizes the data inputs into the formats required for 
the integrated models. Approximately 1200 model executions 
per hectare (400 spatial elements, one management scenario, and 
three model executions [RUSLE2, WEPS, SCI] per spatial ele-
ment) are required. Results are provided to the user through an 
SQLite database.

Assembly of data and execution of the models requires resolv-
ing information at diff erent spatial scales between the various 
databases. It is important to recognize the implications of using 
each of the integrated models within this multiscale framework. 
RUSLE2 has been developed with the base computation unit 
as a single overland fl ow path along a hillslope profi le and for 
conservation planning where a particular overland fl ow path is 
selected to represent a fi eld. Conservation planning guidelines 
select a management practice that controls erosion adequately for 
that fl ow path profi le. Th e conservation management planning 
application of RUSLE2 requires selection of a representative 
soil, slope, slope length, and yield that are considered constant 
for the fi eld. To use RUSLE2 at the subfi eld scale, the assumption 
is made that the soil, slope, and yield characteristics at each base 
spatial element provide the representative overland fl ow path for 
the fi eld. Th is is a reasonable approach but must be applied with 
care. Each base spatial element does not exist as an independent 
entity but rather is infl uenced by its neighboring elements. Th is 
is an important assumption that needs additional review and 
consideration, but, as discussed in Muth et al. (2012), signifi cant 
insight can be gained by applying RUSLE2, WEPS, and SCI at 
the base spatial element scale. A similar assumption is made for 
WEPS, which models a three-dimensional simulation region 
representing a fi eld or a small set of adjacent fi elds. Th e assump-
tion made to use WEPS in the subfi eld scale integrated model is 
that the soil, slope, and yield characteristics for a spatial element 
in question are representative of a fi eld-scale simulation region. 
Th e SCI is modeled for each spatial element by using the SCI 
subfactors calculated by RUSLE2 and WEPS using the assump-
tions as stated. Th e specifi c spatial details for each database used 
in the integrated model are provided in Muth et al. (2012).

In this study, agricultural residue removal rates based on com-
mercially available equipment confi gurations are contrasted with 
removal rates based on a conceptual variable-rate residue removal 
equipment confi guration in the same three Iowa fi elds and using 
the same management practices evaluated by Muth et al. (2012). 
Th ese fi elds are described in Tables 1 and 2. Th ese three fi elds were 
chosen for this series of studies because of the availability of high-
spatial-resolution subfi eld scale data and because they exhibit a 
wide range of subfi eld scale variability of soil conditions, surface 
topography, and yield. Two of the fi elds are in a continuous corn 
crop rotation, and the other is in a corn–soybean [Glycine max 
(L.) Merr.] rotation. Th e list of operations used to describe these 
two rotations is shown in Table 3. Th ese operation lists are consis-
tent with the NRCS standards in the region where all three of the 
fi elds are located. Th ese standards specifi cally include the timing 
of fi eld operations and the type of equipment that is used for fi eld 
operations. Two of the fi elds are modeled with reduced tillage 
practices, and one is modeled with conventional tillage practices, 
each representative of the tillage practices implemented in these 
fi elds (Table 3). Th e SSURGO soils that make up each fi eld are 
shown in Table 1. Th e model assumptions and confi gurations 
for each tillage regime are consistent with the tillage defi nitions 
provided by the Conservation Technology Information Center 
(CTIC, 2012). Conventional tillage includes full-width tillage 
passes and results in less than 15% of the residue remaining on 
the soil surface aft er planting the next crop. Reduced tillage again 
involves full-width tillage passes but leaves up to 30% of the resi-
due on the soil surface aft er planting.
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Th e subfi eld model uses high-spatial-resolution input data 
sets providing soil characteristics, surface slope, and grain yield. 
Crop yield data are supplied from the combine harvester yield 
monitor systems and represent actual yield data from the 2010 
harvest provided by the farmers who supported this study. Each 
crop yield data point is a base spatial unit for the subfi eld scale 
integrated model, and each of these points represents a spatial 
element at the 1-m scale. Surface topography data are supplied 
by light detection and ranging (LiDAR) through airborne 
laser scanning (Vitharana et al., 2008; McKinion et al., 2010). 
Th e LiDAR data for the state of Iowa are provided by the Geo-
TREE LiDAR mapping project and are managed in an SQLite 
database within the integrated model (GeoTREE, 2011). Th e 
LiDAR data are also provided at the 1-m scale. Soil characteris-
tics data are provided by the Soil Survey Geographic (SSURGO) 
Database (USDA–NRCS, 2011c), an open-access national soil 
survey database provided by NRCS. Th e SSURGO data are at 
the 10- to 100-m scale. Climate data are represented in the inte-
grated model at the county scale (∼10,000–100,000 m) and are 
provided by three sources: NRCS-managed RUSLE2 climates, 
CLIGEN, and WINDGEN. For an individual fi eld, the centroid 

latitude and longitude are used to establish the climate input data. 
Th e RUSLE2 climate data are pulled in for the county where the 
centroid is located. Th e CLIGEN and WINDGEN databases 
use an interpolation algorithm to calculate climate data based on 
triangulation of nearby weather stations. Land management data 
are provided by an NRCS-managed database, which is housed 
in the integrated model as an XML data structure. Management 
data are a fi eld-scale characteristic.

Th e variable-rate removal operations were modeled as a 
direct bale unit where a large square baler is pulled and pow-
ered by the combine harvester and receives residue material 
directly from the separation units within the harvester. Th is 

Table 1. Soil Survey Geographic Database soils for each fi eld and identifi cation of the fi eld characteristics required for conservation management 
planning assessment using Natural Resources Conservation Service guidelines. These characteristics include the dominant critical soil and slope 
representing each fi eld, the fi eld average grain yield, and the residue removal operations.

Field
Complete list of SSURGO† soils comprising 

each fi eld (in order of area: high to low)
Dominant critical soil for each 

fi eld from NRCS‡ guidelines

Dominant critical 
slope for each fi eld 

from NRCS guidelines

Field average 
corn grain yield

Residue harvest 
operations

Mg ha−1

1 84 Clyde silty clay loam, 0–2% slopes 83B Kenyon loam 4.0% 10.85 rake and bale

198B Floyd loam, 1–4% slopes

173 Hoopeston fi ne sandy loam, 1–3% slopes

83B Kenyon loam, 2–5% slopes

407B Schley loam, 1–4% slopes

175B Dickinson fi ne sandy loam, 2–5% slopes

41B Sparta loamy fi ne sand, 2–5% slopes

2 688 Koszta silt loam, 0–2% slopes 688 Koszta silt loam 1.0% 12.60 rake and bale

587 Chequest silty clay loam, 0–2% slopes

3 587 Chequest silty clay loam, 0–2% slopes 587 Chequest silty clay loam 1.0% 12.40 rake and bale

687 Watkins silt loam, 0–2% slopes

88 Nevin silty clay loam, 0–2% slopes

7 Wiota silty clay loam, 0–2% slopes

133 Colo silty clay loam, 0–2% slopes

688 Koszta silt loam, 0–2% slopes

8B Judson silty clay loam, 2–5% slopes

422 Amana silt loam, 0–2% slopes

54 Zook silty clay loam, 0–2% slopes

† Soil Survey Geographic Database.

‡ Natural Resources Conservation Service.

Table 2. Descriptions and characteristics of the three fi elds investigated 
in this study, including fi eld size, crop rotation currently being used, 
and the tillage practices consistent with Conservation Technology 
Information Center defi nitions.†

Field Location Area Crop rotation Tillage

ha

1 Cerro Gordo County, Iowa 57 corn–soybean reduced

2 Iowa County, Iowa 19 continuous corn reduced

3 Iowa County, Iowa 77 continuous corn conventional

† Defi nitions from CTIC (2012).

Table 3. Identifi cation of the specifi c fi eld operations and timing of fi eld 
operations for the continuous corn and corn–soybean crop rotations 
modeled in this study with reduced tillage assumptions.†

Continuous corn Corn–soybean

1 Nov., 
year 1

chisel plow
20 Apr., 
year 1

fertilizer application

25 Apr., 
year 2

fertilizer application
1 May, 
year 1

fi eld 
cultivation

1 May, 
year 2

fi eld 
cultivation

1 May, 
year 1

plant corn

1 May, 
year 2

plant corn
11 Oct., 
year 1

harvest corn grain 
direct bale residue

11 Oct., 
year 2

harvest corn 
grain DB residue

1 Nov., 
year 1

chisel plow

15 May, 
year 2

plant soybeans

1 Oct., 
year 2

harvest soybeans

† Assembled from the Natural Resources Conservation Service opera-

tions database.
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was modeled assuming machine adjustments through the 
header and the separation units. For removal rates from 25 to 
50%, the header height was assumed to be standard for current 
commercial harvest operations, and a control system within the 
harvester separation unit was assumed to adjust the quantity of 
material entering the baler. For removal rates from 50 to 80%, 
the header height was assumed to be adjusted lower, moving 
more of the plant residue through the harvester and then to 
the baler. Th e standard corn header was exchanged for a row 
crop header, and machine performance impacts of this con-
fi guration were not considered in this study. Based on this, the 
direct bale residue harvest operation was modeled from 25 to 
80% removal at 5% increments. Including the potential for no 
removal, this creates 13 potential removal rates.

Th e integrated model was run at each yield data point within 
a fi eld for the complete set of crop rotation/residue removal 
combinations. Sustainable removal rates from 0 to 25% are mod-
eled and binned at 0% removal; 25 to 29.9% are binned at 25% 

removal with that schema, continuing to 79.9% removal. Sus-
tainable removals from 80 to 100% are binned at 80% removal. 
Residue harvest at each yield point was evaluated for sustain-
ability, thus requiring total wind- and water-induced soil ero-
sion to be less than or equal to the tolerable soil loss level identi-
fi ed by NRCS for the particular soil and the SCI to be greater 
than or equal to zero. Th e highest removal rate satisfying these 
criteria was established as the removal rate for each yield point 
with the assumption that the harvesting equipment could make 
these adjustments on the fl y. Executing this analysis resulted in 
approximately 15,600 model executions per hectare (400 spatial 
elements, 13 residue removal scenarios, and three model execu-
tions per spatial element).

Results and Discussion
Th e subfi eld scale model scenarios described previously were 

run for each of the three fi elds, and the results are shown in Fig. 2, 
3, and 4. Field 1 has diverse soil characteristics, with soil organic 

Fig. 2. Field 1 soil organic matter and sand fraction in the top soil horizon, surface slope, grain yield, and variable-rate removal results.
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matter ranging from 1.5 to 7.5% and sand fractions ranging from 
17.8 to 87.0% in the top horizon of the soil (Fig. 2). A higher 
sand fraction can indicate a tendency for greater wind erosion 
losses. Areas of low organic matter and high sand fraction cor-
relate with the higher surface slopes (Fig. 2c). Th e areas of higher 
surface slopes in Field 1 represent hilltops. Th ese fi eld character-
istics have a negative impact on grain yield (Fig. 2d). Muth et al. 
(2012) determined that only 21% of Field 1 would be managed 
sustainably with rake and bale residue removal due to the signifi -
cant diversity in soil and surface slope characteristics and because 
the NRCS guidelines fi nd that rake and bale residue removal 
is not sustainable for this fi eld. Figure 2e shows the sustainable 
residue removal fraction across Field 1 for the land management 
assumptions as listed in Table 2. Th e sustainable residue removal 
ranges from 0 to over 5 Mg ha−1 (Fig. 2f ). A visual comparison 
fi nds that areas with low grain yield do not sustainably support 

residue removal. Specifi cally, for grain yields below approximately 
5 Mg ha−1, the minimum removal rate of 25% modeled for the 
conceptual variable-rate removal confi guration is too high for 
sustainable removal. A visual comparison of Fig. 2a and 2e also 
shows that the sustainable removal fraction increases in areas of 
the fi eld where soil organic matter is higher. Th e SSURGO soil 
map units shown in Fig. 2a are soil survey data, and the explicit 
transitions between diff erent organic matter levels seen in Fig. 2a 
will be continuous in the fi eld. In the same way, if higher resolu-
tion soils data were to become available, the explicit transitions 
to higher residue removal rates for the variable-rate harvester in 
Fig. 2e would have transitions that are more continuous. Th e 
accuracy of the subfi eld integrated model and consequently the 
conceptual variable-rate removal confi guration are dependent on 
the quality and resolution of the soils data available.

Fig. 3. Field 2 soil organic matter and sand fraction in the top soil horizon, surface slope, grain yield, and variable-rate removal results.
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Field 2 is managed with a continuous corn rotation and 
reduced tillage practices (Table 2). Th is fi eld has minimal soil 
and surface slope diversity (Fig. 3a and 3b). Grain yields are gen-
erally high in this fi eld, and the rake and bale residue removal 
operations were found to be sustainable for 83% of Field 2 using 
the subfi eld scale integrated model (Muth et al., 2012). Th e frac-
tional residue removal map using the conceptual variable-rate 
residue harvester shows that the majority of the fi eld sustainably 
supports removal rates of 60% or greater (Fig. 3e). Because soil 
and surface slope conditions in Field 2 are generally uniform, the 
residue removal rates look similar to the grain yield map (Fig. 
3d). Small pockets of lower grain yields along the edges of and 
in locations within Field 2 lead to little or no residue sustain-
ably available with the variable-rate harvester in these areas. Th e 
majority of Field 2 can sustainably provide residue removal of 
approximately 5 Mg ha−1 or greater (Fig. 3f ).

Field 3 is modeled in a continuous corn rotation using conven-
tional tillage practices. Field 3 has moderate diversity in soil char-
acteristics compared with Fields 1 and 2 (Fig. 4a and 4b). Surface 
slope in Field 3 is generally uniform and low at less than 1.5% for 
most of the fi eld (Fig. 4c). Grain yield is highly variable in Field 3 
(Fig. 4d). Signifi cant portions of the fi eld had grain yields less than 
4.5 Mg ha−1, and large areas of Field 3 also had relatively high grain 

yields above 13 Mg ha−1. Th e sustainable residue removal fraction 
map using the variable-rate residue harvester shows that areas 
of high grain yield correlate with high removal fractions above 
65% (Fig. 4e). Th e removal rate map in Fig. 4f directly relates to 
the grain yield variability in Fig. 4d. A signifi cant area in Field 3 
cannot have any residue removed sustainably, but large portions of 
the fi eld can sustainably provide over 8.5 Mg ha−1 of residue.

Figures 5a through 5c show the mass fraction of residue 
removed sustainably and the area fraction of residue harvested 
by bin for each of the three fi elds. Nearly 13% of the area in Field 
1 requires a 0% removal rate to be sustainably managed (Fig. 
5a). Th e 45% removal rate covers the most area and provides 
the most residue mass for Field 1 of the range of removal rates. 
Higher removal rates provide more residue per unit area, and 
Fig. 5a shows that, although the 65% removal rate is only used 
for about 12% of the fi eld, it provides nearly 20% of the total 
residue mass sustainably available in Field 1. Th e results in Fig. 
5a show that to collect 90% of the sustainably removable residue, 
the variable removal rate harvester would need to be capable of 
on-the-fl y rate adjustments from 40 to 65%. Th e requirements 
are diff erent when considering harvester performance for sus-
tainably managing a land area. In this case, the variable-rate 
harvester would need to be able to make on-the-fl y adjustments 

Fig. 4. Field 3 soil organic matter and sand fraction in the top soil horizon, surface slope, grain yield, and variable-rate removal results.
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down to 0% removal to achieve sustainable removal for 100% of 
the area in Field 1. Accounting for both maximizing residue mass 
collected and sustainably managing a land area requires a robust 
and dynamic variable-rate residue harvester in Field 1.

Figure 5b shows that lower diversity in the subfi eld character-
istics found in Field 2 create diff erent variable-rate residue har-
vester performance requirements than the more diverse Field 1. 
Looking at Fig. 5b, the 65% removal rate is used for over 40% of 
Field 2. When 5% removal rate adjustments to 60 and 70% are 
included, nearly 80% of Field 2 is represented. Figure 5b shows 
that if the harvester has the ability to adjust between 60 and 
70% removal rates, over 90% of the sustainably removable resi-
due mass would be collected in Field 2. Th ese results show that 
the uniform subfi eld characteristics in Field 2 result in much less 
intense variable-rate residue harvester performance requirements 
to achieve sustainable practices and maximize residue removed 
than found for Field 1.

Over 15% of the area in Field 3 requires no residue harvest, 
and over 35% of the area in the fi eld requires removal rates at or 
below 50% (Fig. 5c). In contrast, the majority of the sustainably 
available residue mass will be collected at removal rates at 60% or 
above. Field 3 presents a scenario where on-the-fl y removal rate 
adjustments within the variable-rate harvester need to cover the 
full range of the modeled assumptions to sustainably manage the 
land and maximize sustainably removed residue mass.

One question that arises is whether the full range of 25 to 
80% is needed or if a smaller range of residue removal would be 
nearly as eff ective. In Field 1, a variable-rate harvester with the 
capability to adjust between 40 and 65% residue removals would 
collect 91% of the sustainably removable residue mass. In Field 2, 

the variable-rate harvester would need to adjust between 60 and 
70% removal rates to collect 92% of the sustainably removable 
material. For Field 3 to achieve 90% removal of the sustainably 
available residue would require removal rate adjustments from 
50 to 70%. Th erefore, if the variable-rate harvester was able to 
make on-the-fl y adjustments from 40 to 70% removal rates, more 
than 90% of the sustainably available residue would be removed 
from each of these fi elds.

For each of the three fi elds, Table 4 compares the variable-
rate residue removal scenario in this study to the current NRCS 
guidelines for sustainable rake and bale removal of the entire 
fi eld and the selective subfi eld rake and bale single-rate residue 
removal scenario discussed in Muth et al. (2012). Th e selective 
subfi eld rake and bale removal scenario assumes, for purposes 
of the analysis, that rake and bale removal could eff ectively 
be turned off  in sections of the fi eld where the operation was 
found to be unsustainable. Th e sustainable removal rates of 
agricultural residue for the conceptual variable-rate removal 
equipment were 2.35, 7.69, and 5.62 Mg ha−1 for Fields 1, 2, 
and 3, respectively. In contrast, the sustainable removal rates 
using rake and bale removal and NRCS guidelines for the entire 
fi eld were 0.0, 6.40, and 5.06 for Fields 1, 2, and 3, respectively. 
In addition, the variable-rate residue removal sustainably man-
aged 100% of the land area in all three fi elds. In contrast, Field 1 
could not be sustainably managed using rake and removal, and 
83% of the land area of Field 2 and 62% of the land area of Field 
3 were managed sustainably using rake and bale removal for the 
entire fi eld. Th e selective rake and bale residue removal harvest 
of 21% of Field 1 provided 0.62 Mg ha−1, and, as a consequence, 
it is likely that this fi eld could not be harvested sustainably and 

Fig. 5. Removal fraction distribution for variable-rate harvest scenarios in each of the three fi elds.
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economically. Selective rake and bale harvest of Fields 2 and 3 
managed the entire land sustainably but only harvested 83 and 
62% of the land area, respectively, and provided lower residue 
yields (5.70 and 3.65 Mg ha−1, respectively) relative to current 
NRCS practice.

Th e investigation described in this paper assessed the poten-
tial of variable-rate residue removal technology for increasing 
sustainably removable residue and characterizes the performance 
of the conceptual variable-rate harvester required to maximize 
sustainable removal of residue. Th is analysis was performed for 
three representative Iowa fi elds. Subfi eld scale variability in soil 
characteristics, topography, and yield signifi cantly aff ect sustain-
ably available residue removal rates in all three fi elds. In each of 
the fi elds, variability in one or more of these items led to a wide 
range in sustainable residue removal in diff erent areas of the fi eld. 
For Field 1, soil properties had a large impact on the residue avail-
ability, whereas in Fields 2 and 3 the sustainable residue removal 
rates correlated to grain yield. In each fi eld there were areas where 
no residue was sustainably available and areas where large por-
tions of the available residue could be removed sustainably.

It was found that variable-rate residue harvest technologies 
support the challenging goals of optimizing residue removal for 
sustainable land management and bioenergy production. Com-
pared with NRCS guidelines that suggest that no residue could 
be sustainably removed in Field 1, the conceptual variable-rate 
residue harvester modeled here would sustainably manage 100% 
of the land area while providing an average of 2.35 Mg ha−1 of 
residue for energy use. In Fields 2 and 3, variable-rate harvesting 
provided 1.29 and 0.56 Mg ha−1 more residue, respectively, than 
NRCS guidelines using rake and bale removal while sustain-
ably managing 100% of the land area. Th e results of this analysis 
suggest that variable-rate removal of agricultural residue could 
sustainably provide more agricultural residue for energy produc-
tion while improving sustainable management of land resources. 
Several challenges must be confronted for practical implementa-
tion of the conceptual variable-rate removal system investigated 
here. First, agricultural residues have a limited market and are 
less valuable than grain. It is unlikely that new equipment will 
be purchased specifi cally to support residue removal. A potential 
solution to this problem is the development of low-cost enhance-
ments for existing combine harvesters that support the removal 
rate adjustments of 40 to 65%, which this study found to be suffi  -
cient for removing 90% of the sustainable residue. Another chal-
lenge for commercial implementation is real-time calculation of 

sustainable removal rates. Th e integrated model presented here 
provides a foundation for developing this capability. Every input 
variable for the model other than grain yield is available before 
harvest. Several computational techniques are available that can 
reduce the detailed model developed here to a computationally 
tractable, real-time algorithm for producing the sustainable resi-
due removal rate.
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